Reference Data

Complete ¹³C NMR Assignment of the Dental Adhesive Monomer 4-Methacryloyloxyethyl Trimellitate Anhydride and its Hydrate

SHIGERU ITO^{1*} and SEIICHIRO FUJISAWA²
¹ Institute for Medical and Dental Engineering,
Tokyo Medical and Dental University,
2-3-10 Surugadai,
Kanda,
Chiyoda-ku,
Tokyo 101,
Japan
² Department of Dentistry,
Meikai University,
1-1 Keyakidai,
Sakato,
Saitama 350-02,
Japan

The ¹³C-NMR spectra of 4-methacryloyloxyethyl trimellitate anhydride (4-META; 1) and its hydrate (4-MET; 2) have been completely assigned using a combination of 2D NMR experiments (¹³C-¹H HETCOR and HMBC) and a heteronuclear NOE experiment. © 1997 by John Wiley & Sons, Ltd.

Magn. Reson. Chem. **35**, 213–214 (1997) No. of Figures: 1 No. of Tables: 1 No. of References: 8

KEY WORDS NMR; ¹³C NMR; dental adhesive monomer; 4-methacryloyloxyethyl trimellitate anhydride; 4-methacryloyloxyethyltrimellitic acid

Received 28 June 1996; revised 16 September 1996; accepted 23 September 1996

INTRODUCTION

The 4-methacryloyloxyethyl trimellitate anhydride (1)-methyl methacrylate-tributylborane system is widely used in density as a restorative material, 1,2 and the commercial source contains appreciable amounts of 4-methacryloyloxyethyltrimellitic acid (2), a hydrate of 1.3 In connection with investigations of the bonding mechanism between monomers and mineralized tooth surfaces,4 we have found the characteristic downfield shift of the aromatic three-proton signals at the trimellitic acid moiety of 2 by the addition of calcium phosphate to an aqueous solution of 2 using high-resolution ¹H NMR spectroscopy, suggesting that a certain intermolecular interaction occurs between trimellitic moiety and calcium ions. The oxylic functions of 1 and 2 are expected to have some potential interactions with calcium ions, and we therefore focused on the carbon component in order to clarify the interactive profile of the carboxylic groups of 1 and 2, and report here the complete assignment of the ¹³C NMR spectra of 1 and 2.

EXPERIMENTAL

Materials

DMSO- d_6 (Isotec, 99.9 atom% D) and CDCl $_3$ (CEA, 99.8% D) were treated with thoroughly dried molecular sieves (3 Å). Trimellitates 1

* Correspondence to: S. Ito

and 2 were prepared as described previously 1,5 and were used as ca. 100 mm DMSO- d_6 or CDCl $_3$ solutions.

NMR spectra

All 1D and 2D NMR spectra were obtained on a JEOL Alpha-500 spectrometer equipped with a 5 mm tunable probe and operating at 37 °C. One-dimensional ¹H (500 MHz) and ¹³C (125 MHz) spectra were acquired using standard conditions with 16K data ponts to give 0.61 and 2 Hz digital resolutions per point, respectively. Data were processed with an exponential window function and the chemical shifts are given in ppm from internal TMS. Two-dimensional heteronuclear coherence spectra were processed in the absolute value mode. Carbon detected HETCOR spectra⁶ were collected in a 1024 × 256 matrix with a spectral width of 16700 Hz in the carbon domain and 4900 Hz in the proton domain and zero filled to a 1024×512 matrix before processing. Fourier transformation and a shifted sine-bell squared window function was applied in both dimensions. Inverse proton detected HMBC spectra⁷ were collected in a 1024×512 matrix with a spectral width of 4800 Hz in the proton domain and 20 400 Hz in the carbon domain and zero filled to 1024×1024 data points. The experiment was carried out applying various delays optimized for long-range coupling constants of 8 Hz (62.5 ms), 5.6 Hz (125 ms) and 2.5 Hz (200 ms). Data were processed using parameters similar to those used in the HETCOR experiment. The heteronuclear NOE experiment on 1 (400 mm solution in CDCl₃) was performed using the ¹³C-{¹H} NOE pulse sequence.⁸ The selected proton was irradiated at an attenuation level 360 and more than 4000 scans were acquired, applying a 0.48 s acquisition time and a 7 s relaxation delay.

RESULTS AND DISCUSSION

The 13 C NMR, DEPT and 13 C $^{-1}$ H HETCOR data for 1 in DMSO- d_6 and in CDCl $_3$ are summarized in Table 1. In the 13 C $^{-1}$ H HETCOR spectrum of 1, which provides good 13 C resolution, the signals are well resolved to allow determination of the chemical shifts of four protonated sp 2 carbons at the methacryloyl and trimellitic sites. The assignment of the non-protonated carbon signals and two carbon signals of the ethylenedioxy portion was accomplished using a combination of HMBC experiments and heteronuclear selected NOE experiments for 1. In both solvent systems, HMBC experiments for 1 showed connectivities between H-15 and C-13, between H-15 and C-12, between H-11 and C-12 and between H-10 and C-9, as shown in Fig. 1 to facilitate the assignment of the methacryloyloxyethyl moiety.

The observed connectivities between H-3 and C-1, C-5, C-8 and C-9, between H-5 and C-3, C-1, C-7 and C-9 and between H-6 and C-3, C-7, C-2 and/or C-4 served to elucidate three carbonyl carbon signals and the quaternary carbon signals in the trimellitic moiety except for C-2 and C-4. However, the observed three-bond connectivities starting from H-6 did not contribute to the discrimination of C-2 and C-4, and no two-bond connectivity could be observed between H-5 and C-4 under the three chosen conditions for the longrange coupling constant in either solvent system, resulting in an incomplete assignment with respect to C-2 and C-4. Therefore, we performed a heteronuclear ¹³C-{¹H} NOE experiment. The selective ¹³C-{¹H} NOE difference spectrum preirradiated at H-5 clearly showed NOEs at δ 137.32 ppm, which was identified as C-4, and at δ 163.72 ppm (C-9). Additionally, an identification of C-7 was also supported by selective preirradiation of H-6 showing a negative phase NOE at 137.17 ppm (C-5) and two positive phase NOEs at 134.52 ppm (C-1) and 161.81 ppm (C-7), respectively.

Reference Data

Table 1. NMR data for 4-methacryloyloxyethyl trimellitates 1 and 2

	1			2	
Carbon	δCª	DEPT	HETCOR $(\delta H)^a$	δC	HETCOR (δH)
1	135.00 (134.52)	С		137.76	
2	132.10 (131.69)	С		131.05	
3	125.10 (126.89)	CH	8.40 (8.65)	129.14	8.23
4	136.09 (137.32)	С		132.20	
5	136.35 (137.17)	CH	8.47 (8.58)	131.61	8.14
6	125.84 (125.92)	CH	8.22 (8.12)	128.71	7.79
7	162.40 (161.81)	С		168.13	
8	162.36 (161.72)	С		167.19	
9	163.77 (163.72)	С		164.27	
10	63.77 (64.13)	CH₂	4.63 (4.68)	63.11	4.59
11	62.14 (62.02)	CH₂	4.51 (4.54)	62.12	4.48
12	166.40 (167.08)	С		166.34	
13	135.58 (135.79)	С		135.56	
14	126.13 (126.41)	CH ₂	H _a : 5.68 (5.62) H _b : 6.04 (6.15)	125.93	Н _а : 5.68 Н _ь : 6.03
15	17.88 (18.26)	СН _з	1.88 (1.96)	17.77	1.87

^a The chemical shifts are given in ppm from internal TMS observed in DMSO-d₆; the values in parentheses were measured in CDCl₃.

The same approach as exemplified above, except for the $^{13}C-\{^1H\}$ NOE experiment, was utilized to assign all carbon chemical shifts of 2 in DMSO- d_6 , and the results are summarized in Table 1. An HMBC experiment, optimized for a long-range coupling constant of 2.5 Hz,

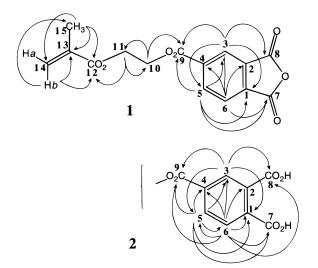


Figure 1. Structures of 1 and 2. The curved arrows indicate C-H couplings observed in the HMBC experiments.

led to the complete assignment of C-4, showing a clear two-bond connectivity between H-5 (δ 8.14 ppm) and C-4 (δ 132.20 ppm) with good column resolution from C-2 (δ 131.05 ppm) and C-5 (δ 131.65 ppm), respectively.

Acknowledgement

We thank Mr K. Tubono, JEOL Datum, for useful advice and discussions.

References

- M. Takeyama, S. Kashibuchi, N. Nakabayashi and E. Masuhara, J. Jpn. Soc. Dent. Appar. Mater. 19, 179 (1978).
- E. Masuhara, A Dental Adhesive and its Clinical Applications, p. 11. Quintessence Publishing, Tokyo (1982).
- M. Suzuki, H. Kato and S. Wakumoto, J. Dent. Res. 70, 1092 (1991).
- L. E. Wolinsky, R. W. Armstrong and R. R. Seghi, J. Dent. Res. 72, 72 (1993).
- S. Fujisawa, Y. Komoda and Y. Kadoma, *Dent. Mater. J* 10, 8 (1991).
- 6. A. Bax and G. A. Morris, J. Magn. Reson. 32, 501 (1981).
- A. Bax and M. F. Summers, J. Am. Chem. Soc. 108, 2093 (1986).
- 8. J. Uzawa and S. Takeuchi, *Org. Magn. Reson.* **11**, 502 (1978).